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ABSTRACT

A numerical algorithm suitable for rapid numerical solution of

0 advanced turbulence-model equations on elliptic regions has been

devised. The algorithm is particularly useful for obtaining accu-

rate solutions when (a) one of the dependent variables is singular

approaching a solid boundary and (b) the number of mesh points

available to resolve the flowfield is small. The new algorithm

is used in conjunction with the MacCormack semi-implicit scheme

for solving the time-averaged Navier-Stokes equations to obtain

solutions for a laminar Mach 2 boundary layer and for a turbulent

Mach 3 boundary layer. In both cases, numerical accuracy is shown

to be excellent for meshes having less than 20 points normal to

the surface. As a corollary result of this study we have shown

that, using the new algorithm and the MacCormack scheme, time-

averaged Navier-Stokes solutions are now feasible using a micro-

computer.
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FOREWORD

This report presents a summary of research performed in Contract

F49620-78-C-0024 during the period March 1, 1978 through December

31, 1981. This research was sponsored by the Air Force Office of

Research (AFSC), United States Air Force. The Air Force program

monitor was Dr. James Wilson.

Study participants were Dr. David C. Wilcox, principal investi-

gator, and Barbara A. Wilcox, contract administrator and data

processing support. Manuscript preparation was done by Kinley A.

Wilcox.

iv



1. INTRODUCTION

During the course of this research project (and also in a numerical

study funded by the NASA Ames Research Center l ) we have found that

conventional time-marching numerical methods encounter serious

difficulty in solving advanced turbulence-model equations. This

difficulty has impeded our progress toward the ultimate goal of this

research project, viz, development of a numerical method for simu-

year our efforts have focused on the cause of and the resolution of

this numerical difficulty.

Prior to this study we found that numerically-accurate steady-flow

solutions generally cannot be obtained for complex turbulent flows

under the following conditions:

1. an advanced turbulence model with additional
dependent variables, one of which usually is
singular near solid boundaries, is used;

2. a severely limited number of points are avail-
able to define the computational mesh for the
region of interest;

3. the equations are integrated through the viscous
sublayer.

For our axial turbomachine applications, all three of the conditions

cited above exist. Firstly, we are using the Wilcox-Rubesin 2 two-

equation model of turbulence which involves a dependent variable

that becomes singular upon approach to a solid boundary. Secondly,

the flowfield in axial turbomachines inherently is three dimensional

and, because computers have limited memory, we anticipate having no

more than 15 mesh points normal to a blade surface contained within

boundary layers. Finally, because we feel that physically meaning-

ful solutions on separation regions require integration through the

viscous sublayer, and because we want our method to treat the sepa-

rated case, our applications include integration through the viscous

sublayers.

Prior to this study, WilcoxI identified two possible sources of

inaccuracy and/or numerical instability which might plague conven-

i tional time-marching methods. He demonstrated that the singular

1



behavior of the turbulent dissipation rate near a solid boundary

cannot be accurately computed with central differences. In an

unsuccessful attempt at analytically removing the singularity with

a straightforward change of dependent variables, improved numerical

accuracy was accompanied by slowly growing numerical oscillations

elsewhere in the flowfield. Wilcox speculated that the source of

these oscillations was the numerical-algorithm-induced (and physi-

cally unrealistic) coupling between the turbulence production

processes and the unsteady rate of change of the turbulence.

In this study, we have devised a numerical algorithm which lacks the

shortcomings of conventional, central-differences-oriented, time-

marching methods when applied to turbulence-model equations. The

method's accuracy and stability have been assessed in two viscous-

flow computations (both performed on a microcomputer), neither of

which can be done accurately with a conventional time-marching

method unless far more mesh points are used.

Section 2 presents the equations of motion and pinpoints the root

causes of the numerical inaccuracy and instabilities encountered in

our attempts to compute viscous flowfields. In Section 3, a new

algorithm is devised to circumvent these difficulties; application to

a simplified turbulence-model equation demonstrates a dramatic impro-

vement in numerical accuracy over conventional algorithms. Section

4 presents results of two time-averaged Navier-Stokes computations,

one for a laminar Mach 2 boundary layer and the other for a turbulent

Mach 3 boundary layer. In both cases, results are (correctly)

obtained which appear unobtainable with a conventional time-marching

method. The concluding section summarizes results and conclusions.

The Bibliography and Contract Overview sections summerize publications

* and highlights of the overall research effort in this Contract.
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2. EQUATIONS OF MOTION AND ASSOCIATED NUMERICAL DIFFICULTIES

This section first presents the basic equations of motion used in

this project. A summary of the numerical difficulties encountered

in trying to solve these equations follows, including a discussion

of truncation error and numerical stability.

5 2.1 EQUATIONS OF MOTION

The equations of motion used in all of our computations are those

devised by Wilcox and Rubesin2 . The model assumes the Reynolds

5 stress tensor, i, is proportional to the mean strain-rate tensor,

Sij, as follows.

ij = 2pe (Sij 1x a ) - pe 6 iJ (1)

In equation (1), p is mass density, e is the eddy diffusivity, ui is

the velocity vector, xj is position vector, 6ij is the Kronecker

delta, and e is the turbulent mixing energy. All quantities are

understood to be mass averaged in the sense introduced by Favre3 .

The mean conservation equations are:

at a (pu ) = 0 (2)

a a £,auk
t (Pui) + (uu = * 21i(Sij - 6i) +

x a(3)

- P6ij}

3E+ ( ) a~ aa- T
S (uE) = x i(tiJ - PSi) + k ax

+ (j + Dep) (4)

where t denotes time, p is static pressure, i is molecular viscosity,

k is the sum of molecular and turbulent heat diffusivities, T is

static temperature, a* is a turbulent closure coefficient which will

I3



be discussed below, and E is the total energy defined by the follow-

ing relation.

SCT + pu 1u + pe (5)

where Cv is specific heat coefficient at constant volume.

In addition to Equations (1-5), the Wilcox-Rubesin model introduces

two additional "rate equations" for the turbulent mixing energy, e,

and the turbulent dissipation rate, w, from which the eddy diffusivity

is computed. The equations are as follows.

a . (pe) + -- (pu e) = -- $*pwe + (P + c*p,) ex (6)at x i axax xj

*P' + ax aui W' ={8I + 2a ( -- ) )

The eddy diffusivity, c, and the turbulent length scale, L, are

obtained from e and w according to':

e = Y* e/w (8)

X= e~,l/a (9)

LFinally, we introduce a turbulent Prandtl number, Pr T, and express the

turbulent heat flux vector as being proportional to the mean temperature

gradient so that the thermal conductivity, k, in Equation (5) becomes:

k = jp/PrL + Pe/PrT } Cv (10)

Where PrL is laminar Prandtl number. Six closure coefficients appear

in Equations (6-8), viz, 8, 8, y, y*, a, and o*. The values of these

closure coefficients have been established from widely observed proper-

ties of turbulent flows. Their values are:

8 = 3/20 8' = 9/100

a = 1/2 o* = 1/2
Y* = l i-(l-X2 )exp (-Re T)l ii

YY* = 10/9 l-(l-A2)exp (-ReT/2)1

A = i/1i

" t] I Il l ll /l l .. .
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and the quantity ReT is the Reynolds number of the turbulence defined

in terms of the dependent variables by:

ReT = pe/(wp) (12)

Before proceeding to a discussion of boundary conditions in the next

subsection, a key point about the equations of motion is worthy of

note. In the mean-energy equatijn (4 ), note that the last term on

the right-hand side generally is omitted by turbulence modelers. The

origin of this term is obvious when the time-averaged equation for

total energy, E, as defined in Equation (5) is derived. If this term
is omitted, there is no guarentee that total energy, E, will be con-

served in the flowfield, even when e << C vT. This is true because

its omission can give rise to nonphysical numerical oscillations whose

energy source is unrelated to the physical energy of the flowfield.

2.2 BOUNDARY CONDITIONS

As noted in the Introduction, in our computation of the flowfields

of interest, we integrate the equations of motion through the viscous

sublayer. Thus, we must specify boundary conditions for the various

dependent variables appropriate to a solid boundary. Denoting distance

normal to the surface by y, we impose the no-slip velocity boundary

condition at y=O. Additionally, for all compressible applications

considered in this study, the surface is adiabatic. Thus, for the

mean-flow quantities we have:

ui 0 )
L at y = 0 (13)

aT/Dy =0

Turning now to the turbulence propoerties, an additional consequence

of the no-slip boundary condition is that the turbulent mixing energy

(which is proportional to the square of fluctuating velocity components)

vanishes at a solid boundary. Also, as noted by Wilcox and Rubesin 
2 ,

the turbulent dissipation rate approaches a known analytical form in

the sublayer. For a perfectly smooth surface we have:

5 5



9

e = 0 at y = 0 (14)
20vW -w as y 0 (15)

F
where subscript w denotes surface value.

Equation (15) illustrates a key point about the turbulence-model

equations which is worthy of note. Remembering that the characteristic
length scale of the turbulence, Z, is inversely proportional to w

approaching a solid boundary implies that Z becomes very small. This
is consistent with the physics of turbulence which finds the constraint
of a solid boundary admitting only the smallest eddies. Thus, even

with the great advantages attending the use of long-time averaging

(compared to, say, a large-eddy simulation), we still must deal with
the problem of resolving very small eddies in a finite-difference com-

putation. This "conservation of difficulty" stands at the center of

the numerical woes attending solution of the turbulence-model equations.

Finally, as will be illustrated in the next subsection, the dissipation

rate is singular (although less strongly than y-2) far above the vis-

cous sublayer. Thus, the numerical difficulties we have encountered
are not caused entirely by our treatment of the sublayer. Rather, all

advanced turbulence models share the same unpleasant (from a numerical

standpoint) behavior.

2.3 TRUNCATION ERRORS

Virtually all finite-difference numerical schemes used for solving

the time-averaged Navier Stokes equations employ central differences.

Usually, such schemes are of second-order accuracy in both time and

space. In our work, for example, we have used variants of the MacCormack

time-splitting method4- 6 which uses second-order accurate, central

differences. Even for relatively crude meshes, such a scheme is sat-

isfactory when the various dependent variables are analytic through-

out the flowfield. However, when one of the dependent variables is

nonanalytic, such as w, truncation errors can become very large.

For example, Figure 1 compares the computed near-surface behavior of

w with the theoretical limiting form given in Equation (15). The profile

6
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shown is for a Mach 3, adiabatic-wall boundary layer. Long experience

with the model equations has shown that, for a wide range of flows

g both incompressible and compressible, very close to the surface

(y += uTy/v < 4) Equation (15) is valid. As shown, the computed

values of w are 20% - 30% higher than the theoretical values. Our

experience with these model equations has shown that this large an

error in w has a large effect on predicted flow properties throughout

the boundary layer.

The reason such truncation errors persist far above the sublayer be-

comes obvious upon inspection of the limiting form of w in the loga-

rithmic (law-of-the-wall) region. As shown by Saffman and Wilcox7

approaching the sublayer from above we have

T U W' +
as y 0 (16)icy

where K = 0.41 is Karman's constant and uT is friction velocity. Thus,

even far above the viscous sublayer w is nonanalytic and the use of

central differences is attended by nontrivial truncation errors.

The source of the numerical inaccuracy becomes obvious if we consider

the magnitude of the errors introduced when using central differences

to compute derivatives of w2 close to the surface. Because we solve

the equations of motion in conservation form, the finite-difference

formulation actually computes pw2 which (ignoring density for simplicity)

exhibits strongly singular behavior, viz,

W ~ y-4 as y ) 0 (17)

It is easy to show if we use the exact values of w2 at two adjacent

mesh points yj and Yj+l' central differences yield:

S(-2) 0 (18)ay-J+ "y exact (l-e2) 4

where
w C yj+l - YJ 

(19)

Yj+l + Yj

8



Because of the fine resolution close to the surface (for the point

nearest the surface the computation of Figure 1 has y ) the

9 smallest value of e for the mesh used is 1/5. Using this value for

c in Equation (18) yields

=a 2 1.27 (a-w-) (20)
ay ay exact

Thus, using conventional central differences yields more than a 25%

error when computing derlvattves.

In order to illustrate the point that the truncation errors persist

far beyond the sublayer, Figure 2 shows results of a computed W

profile obtained from solution of a simplified version of Equation

(7). Specifically, we have dropped all but the dissipation and

molecular diffusion terms so that, for incompressible flow, the

equation simplifies to

v d 2 3  (21)

dy
2

the exact solution of which is

= 20v (22)

The figure shows results of two computations both of which use a mesh

similar to that of the Navier-Stokes computation discussed above.

That is, mesh points normal to the surface are spaced in a geometric

progression with progression ratio k = 1.25. In the first computation,

the value of w at the mesh point nearest the surface is obtained from

Equation (22). As shown, the local error close to the surface is in

excess of 50%. In the second computation, Equation (22) is used to

prescribe the value of w for the 10 mesh points nearest the surface

(a procedure used in most of our past computations provided mesh point

number 10 lies below y = 4). While the local error is reduced signif-

icantly near the surface, there is little improvement in accuracy

farther from y = 0.

L9
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2.4 STABILITY CONSIDERATIONS

* A second, less obvious, numerical difficulty becomes evident upon

considering the stability of a given numerical scheme when applied

to the model equations. A simplified version of the equations for

e and w2 which illustrates potential problems is as follows.

Be + u.e~ = Pe + V-2- (23)

In Equation (23), P denotes net production, viz, production minus

dissipation. In the case where P is constant, it is easy to show

that even for a typical implicit second-order accurate time-marching

scheme, positive P leads to unconditional instabilityl in the classical

sense. This is unsurprising however as solutions to Equation (23),

subject to certain initial and boundary conditions, grow exponentially

in time. Thus, even though local errors might be small compared to

the solution itself, they will also grow exponentially. A numerical

analysis of Equation (23) performed in this study verified this in-

stability when P is positive.

A key shortcoming of the model equation (23) is the independence of e

from the mean kinetic energy. In any physical flow, there will not

be an infinite source of energy as implied in Equation (23). Rather,

the coefficient P will increase at the expense of the mean kinetic

energy and u will decrease. To simulate this situation we studied

a model in which we have

P = pu 2 
-a* (24)

2U2 + e = constant (25)

where p is a constant and an equation similar to Equation (23) is

written for w2. Using MacCormack's explicit scheme 4 , this system

displays no numerical instability for Courant numbers less than one.

Thus, as noted in Subsection 2.1, if we are not careful enough in

writing our turbulence model equations to insure conservation of

* total energy, unusual numerical instability may arise.

• 11



However, it is still possible for the production term to cause large

numerical excursions from the steady state, especially if the initial

flowfield is quite different from the long-time solution. In the W

equation, for example, very close to the surface we should find a

balance between dissipation and molecular diffusion. By contrast we

have often observed a strong (nonphysical) coupling between the un-

steady and the dissipation terms which causes w2 to become negative.

Hence, the presence of the source terms can present numerical problems

quite unlike those encountered with conventional conservation

equations.

1I
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3. A NEW ALGORITHM

* In this section we present a new algorithm which simultaneously

eliminates truncation errors and effectively removes nonphysical

coupling between source and unsteady terms. First we motivate and

present the algorithm; then we apply it to Equation (21).

3.1 MOTIVATION

In a previous study, Wilcox tried removing the near-wall singularity
analytically by making the straightforward change of variables:

2 = */y 4 (26)

The function * is analytic as y - 0 and presumed a more appropriate

* quantity to compute. However, using the MacCormack hybrid explicit-

implicit method 5 Wilcox simultaneously (a) improved near-wall

accuracy and (b) introduced large (bounded) numerical oscillations.

While this change of variables eliminates truncation errors, it

* apparently aggrevates numerical stability via attending alteration

of the source terms.

To provide motivation for the new algorithm which will be presented

in the following Subsection, it is instructive to consider the

limiting form of the w equation upon approaching y = 0. It is easy

to show that the equation has the following form for a constsnt-

pressure boundary layer:

a2 w2 + , a 3_ 2 = F (27)

ay 2  y ay - 2

where precise details of the coefficients F, p and q are unimportant

(see Equations 34-35 below). Of greatest importance is their behavior

close to the surface where we find:

Viscous Sublayer (y+ < 10)

F 0

q 0 as y 0, y+ < 10 (28)

p 20

y 4W 2-constant

13



Wall Layer (10 < y+ < 100)

F 0

q+ 1 +
as y 0, 10 < y < 100 (29)

p 4
y 2W2 -constant

Inspection of Equations (28) and (29) shows that the singularity

changes its strength across the sublayer/wall-layer interface. It

futher suggests that a more-appropriate transformation might reflect

this fact.

3.2 THE ALGORITHM

The observations in the preceding Subsection suggest the following

* change of variables:

= , yX (30)

where X is assumed to be a function of p and q and also of time, t.

# Substituting Equation(30) into Equation (7) yields

(POij++apx) 2!P. + 2x p + ape)apj)+ (31)

E D axi (V+a f)

2(P + pe) - pv
+ 2

P + peop 
t  X2  P + ape X + + p (32)

where

Sy j Th +2o(a)x pw (33)

There are three key points about the transformed equations worthy of

note. First, while Equation (31) contains a nonconservation-like

term, viz, the term proportional to 3*/ay, the term shouldn't destroy

numerical stability. The new term will behave more like an extra

convective flux and should be far less troublesome provided it Is

differenced in a manner consistent with that used for the standard

convective terms.
D

Second, the coefficients in the equation for X are directly related

14



p

to the p and q appearing in Equation (27). In fact, we have

q = . y( + ape) -PV

q+ ap (34)

P + ape (35)

Hence, in the steady state (ax/at = 0) we have

x2 + (q - l)x - p = 0 (36)

so that

X = (1 - q) - V(l - q)' + 4p (37)

where we have selected the root of Equation (36) which yields negative

X. Substituting the rrlues of p and q from Equations (28-29) into

Equation (37) shmw f

-4, in the sublayer

t i(38)

-2, in the wall layer

Thus, the transformation captures the proper nature of the singularity

in both near-wall regions.

The final key point is that we have a method which requires no specific

alteration of the particular numerical method used. Central differ-

ences should be satisfactory for computing * as it is an analytic

function as y -) 0.

In summary, the change of dependent variables proposed in Equation (30)

has the following three desirable features:

1. It replaces the Pw 2 type source term with a
more familiar convective-type term;

2. It reflects the varying strength of the w
2

singularity in the near-wall region of a
boundary layer;

3. It places no unusual constaint on the type of
numerical algorithm used.

15



In principal, this transformation has very desirable properties.

To provide a definitive numerical accuracy test, the next Subsection

shows results of its application to Equation (21) for which the exact

solution is known, i.e., Equation (22).

3.3 APPLICATION WITH A SIMPLIFIED MODEL

* As our first application of the new algorithm, we consider the limit-

ing near-wall form of the equation for w, viz, Equation (21). This

equation provides a definitive accuracy check as the exact solution
6is known and is given in Equation (22). The new MacCormack implicit

method is used so that we introduce an unsteady term to Equation (21)

and seek the long-time solution. Thus, the actual equation being

solved is

* aW2  
- (39

_--t = V - - Ow (39)

Introducing the transformation defined in Equation (30) leads to the

following equations for 4 and X:

V + 2XV-i- (40)
at a y ay

(y 2 logy) = _ x - y2W/V(41)

where w is understood to be computed from 4 and X according to Equation

(30). In the steady state, the exact solution to Equations (40) and

(41) is

5 ' = 20v/0 (42)

X = -4 (43)

These equations have been solved using a grid with equally spaced

mesh points. Such a grid which would yield even larger truncation

errors than shown in Figure 2 if we solved Equation (39) without the

transformation to * and X. The grid was also constructed to insure

that the nondimensional y coordinate, viz,

y= Uy/v (44)

16



where U is a characteristic velocity, will always be greater than

unity. Early numerical experimentation showed that Equation (41)

is more easily solved if the logy term on the left-hand side re-

tains the same sign throughout the mesh.

The initial profiles for * and X were varied about the exact steady-

state values given in Equations (42) and (43).

In all computations, no more than 50 timesteps were required to reach

steady-state. Regardless of the initial conditions, the solution

converged to within six significant figures of the exact solution.

Thus, at least for this simplified test case, the transformation

defined in Equation (30) yields greatly improved numerical accuracy.

Because the exact solution to Equations (40-41) is P = constant and

* X = constant, this simplified example is too simple to warrent pro-

claiming the new method as proven. Neverthelers, this test is well

defined and, if the method failed, there would be little point in

pursuing it any farther. In the next Section, we put the new algorithm

to two rigorous tests.

I
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4. TEST CASES

* In this section, we present results of two computations using the

MacCormack implicit time-splitting scheme in conjunction with the

new algorithm. The full equations of motion are solved for two

compressible boundary layers with a full time-averaged Navier-Stokes

* computer program. The first application is to a Mach 2 laminar

boundary layer and the second to a Mach 3 turbulent boundary layer.

4.1 MACH 2 LAMINAR BOUNDARY LAYER

Our first application addresses a Mach 2 flat-plate laminar boundary

layer. This case provides a significant test of the new algorithm

for two reasons. First, the near-wall w profile defined in Equation

(15) is known to hold through a significant portion of the boundary

layer so we have a rigorous check on accuracy. Second, previous

computations have often had a nonphysical transition to turbulence

even at very low Reynolds numbers.

The finite difference mesh consists of rectangular cells with 12

mesh points in the streamwise direction and 16 points normal to the

surface. Mesh points are spaced in a geometric progression with a

progression ratio k = 1.20. Computation is initiated from uniform

flow with the upstream boundary just ahead of the plate leading edge.

The downstream boundary lies at a plate-length Reynolds number of

4.104. The computation was run for 50 timesteps. Steady flow con-

ditions appear to have been obtained after about 35 timesteps with

the quantity X taking longest of all dependent variables to approach

steady state. Computing time for this case is six hours on a TRS-80

microcomputer.

* Figure 3 compares a computed w profile with the theoretical near-wall

solution. As indicated, the two solutions are in very close agree-

ment up to about y = u Ty/v = 8. Above this point the near-wall

solution is not expected to be valid as convective terms become im-

portant. Thus, we can only check our solution in the asymptotic

18
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limit y - 0. However, this is precisely the limit of greatest

concern and the overall agreement is excellent.

At no point in the computed flowfield is there any evidence of

turbulent energy amplification which might lead to nonphysical

transition. The new algorithm thus appears to eliminate this

undesired computational result.

Because the boundary layer remains laminar in this computation,

the two turbulence model equations play a passive role. To provide

an even more rigorous test we must now turn to a case in which the

model equations play an active role. In our next application we

address such a case.

4.2 MACH 3 TURBULENT BOUNDARY LAYER

In this application we consider a Mach 3 turbulent boundary layer.

Again, the mesh consists of 12 points in the streamwise direction

and 16 points normal to the surface. The mesh point nearest the+
surface lies at y = 2 and the grid points are placed in a geometric

progression with k = 1.25. Initial profiles are obtained from a

boundary-layer program.

The length of the mesh is 22 boundary-layer thicknesses and Reynolds
6 6number based on plate length extends from 1.8.106 to 2.5.106. The

momentum-thickness Reynolds number is 2000 at the upstream boundary.

The main shortcoming of previous Navier-Stokes solutions of the

model equations is that, in addition to w being 20% - 30% too large

in the sublayer, skin friction generally is 15% low. Hence, in

addition to checking the accuracy of the w profile, we must also

check the skin friction.

Figure 4 compares computed and theoretical w profiles for the near-
+

wall solution up to y = 100. As shown, the numerical solution is+ +

within 8% of the theoretical solution below y+ 10. Between y = 10

and 100, the numeric3al solution asymptotically approaches the wall-

layer profile (Equation 16). Thus, w has been computed far more

accurately than in previous Navier-Stokes calculations (cf Figure 1).

20

... . .... .



I-

* H H -'

3 J rr4> a) 0
3

0 Or-I

H

0 c0
C:) u 1:

0I

4-)

(A3.

*H 0

>) 0

21N



The skin friction coefficient is about 5% lower than in the correspond-

ing boundary-layer computation. This is somewhat surprising as the

w profile is actually underpredicted near the surface. Our earlier

arguments would predict a skin friction coefficient which is some-

what overpredicted. The coarseness of the mesh may be responsible.

Nevertheless, this application indicates a great improvement in

numerical accuracy.

This computation required 125 timesteps to reach steady flow conditions,

partly because the timestep was smaller than in the laminar case and

partly because X converged to its steady-state value very slowly.

The overall computing time was 15 hours on a TRS-80 microcomputer.
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5. RESULTS AND CONCLUSIONS

* The new algorithm appears to greatly improve numerical accuracy of

a time-marching method when used to compute a quantity such as w

which behaves nonalytically approaching a solid boundary. This

is particularly true when a very crude finite-difference mesh is

employed. Although the algorithm has been tested for relatively

simple flows, we have no reason to suspect it will fail in more

complex applications.

* An especially desirable feature of the new algorithm is its indepen-

dence of the actual numerical method being used. In essence, we

have found an analytical method for removing a singularity of vary-

ing strength (y-4 very close to the surface, y-2 farther from the

* surface). In so doing, the actual equations which are solved

numerically can be accurately solved by any conventional method

using central differences.

Results presented in Sections 3 and 4 warrent further testing and

development of the technique. The most immediate tests should

be for more complex flows such as shock induced turbulent boundary-

layer separation. More development effort is needed to generalize

the transformation defined in Equation (30) for arbitrary geometry.

After this testing and development has been done we should be ready

to proceed toward our original goal, viz, that of generating accur-

ate numerical solutions for general flow applications such as those

* occurring in axial turbomachines.
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CONTRACT OVERVIEW

The overall object of this project has been to develop a method for

computing flow through the rotor passages of highly-loaded axial

turbomachines. Initially the technical approach was to use the MacCormack

hybrid method 5 to compute the inviscid flow and to use a three-dimen-

sional boundary-layer program to resolve the boundary layers up to

separation. As the project progressed, it became evident that coupling

the inviscid flow program with the boundary-layer program was proving

far more difficult than anticipated because of numerical problems

associated with (a) obtaining smooth pressure gradient input for the

* |boundary-layer program and (b) numerically accurate boundary-layer

profiles without using inordinate numbers of mesh points normal to

blade surfaces. Noting the great promise offered by the new MacCormack

implicit method 6 , we decided to eliminate the coupled inviscid/

* boundary-layer computational procedure in favor of a full time-averaged

Navier-Stokes computation.

A sophisticated mesh generation procedure was developed for rotor

* passages and all program modifications were made to incorporate viscous

stresses in the program.

At this point we found that serious truncation error and numerical

stability problems were present in the computer program which pre-

cluded definitive testing of the method. These problems are delineated

in Section 2 of this report. In order to analyze and eliminate these

problems, the study reported herein was conducted. Although the

algorithm devised in this study has not been incorporated in our turbo-

machine program, we have little doubt that it will resolve the dif-

ficulties encountered.

An additional task was added to the contract to perform computations

for the 1981 Stanford Conference on Complex Turbulent Flows. Results

of those computations appear in Reference 4 of the Bibliography.
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